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Abstract−Thermal conductivities coefficients for gaseous state of N2, O2 and CO2 at zero density are determined

by the inversion technique. The Lennard-Jones 12-6 (LJ 12-6) potential energy function is used as the initial model

potential required by the technique. The Wang Chang-Uhlenbeck-de Boer (WCUB) approach of the kinetic theory of

gases has been used for calculating the contribution of molecular degree of freedom to the thermal conductivity of N2,

O2 and CO2. Also, the initial density dependence of gaseous thermal conductivity according to the Rainwater-Friend

theory, which was given by Najafi et al., has been considered for N2, O2 and CO2.
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INTRODUCTION

Thermodynamics deals with the general principles and laws that

govern the behavior of matter and with the relationships between

material properties. The origins of these laws and quantitative val-

ues for the properties are provided by statistical mechanics, which

analyses the interaction of molecules and provides a detailed descrip-

tion of their behavior. A macroscopic theory of thermodynamics,

either reversible or irreversible, is useful on its own for a large class

of physical problems we encounter in daily life and natural phe-

nomena in general.

Thermodynamics applies to all types of systems in microscopic

[Hill, 1960] or macroscopic aggregation [Kirkwood and Oppenhiem,

1960] and also provides a theoretical framework for correlating the

equilibrium properties of any system.

Meanwhile, a newly emerging field of irreversible thermody-

namics, in which linear irreversible thermodynamics are extended

to the nonlinear regime and macroscopic phenomena far removed

from equilibrium has ambiguity and non-uniqueness [Hwang, 2005].

The thermodynamic properties of fluids are of continuing inter-

est for theoretical [Kwon et al., 1997, 2005; Jang et al., 2003; Oh,

2004, 2005; Oh and Park, 2005] and industrial applications [Park

and Gemhling, 1995; Park and Lee, 1995; Kang et al., 1995]. The

urgent demand of industry for accurate values and estimation schemes

of thermodynamic properties [Oh, 2004, 2005; Oh and Park, 2005]

is increasing, because working fluids are often mixtures. The need

for sufficient data to reliably estimate thermodynamic properties of

mixtures remains today a major industrial problem. Measurements

are costly and time consuming. Thermodynamic properties often

determine the feasibility of a process. Transport properties deter-

mine how large the equipment should be or the time scale of the

operation. Transport properties play an important role in many natu-

ral and technical processes. There are three transport properties of

great concern: diffusion, viscosity and thermal conductivity. Nowa-

days, a large body of research [Bae et al., 1994a, b; Kang and Sangani,

2002] has been conducted in order to consider more carefully the

effects of transport properties on the process and product design.

When first approached, kinetic theory of gases can seem like a

bewildering collection of isolated facts. With deep study, however,

it becomes evident that there only a few fundamental concepts that

underline all facts and events in kinetic theory [Chapman and Cowl-

ing, 1964; Hirschfelder et al., 1964]. Far from being a collection of

isolated facts, kinetic theory is a well-organized logical subject uni-

fied by a few broad themes. When these themes are understood,

learning kinetic theory becomes much easier [Kang and Sangani,

2002; Xiufeng and Xi, 1996; Barker et al., 1964; Vasserman and

Khasilev, 1992; Amoros et al., 1992].

On the other hand, intermolecular forces are a fundamental in-

gredient for both equilibrium and transport properties such as cal-

culation of partial molar volumes [Kwon et al., 2005], transport prop-

erties of simple fluids [Eskandari Nasrabad and Deiters, 2003; Es-

kandari Nasrabad et al., 2004; Xiufeng and Xi, 1996; Barker et al.,

1964; Vasserman and Khasilev, 1992; Amoros and Maseo, 1992]

and computer simulations [Laghaei et al., 2005a, b, 2006; Eskan-

dari Nasrabad et al., 2005, 2006; Erpenbeck, 1983; Cumming and

Evans, 1992; Maghari and Yeganegi, 2000a, b] of the fluid state.

Knowledge of pair interactions between molecules is of great im-

portance in the theory of fluids. Hence, the application of the theory

of fluids to real substances relies on a knowledge of the interac-

tions between real molecules [Trusler, 1991; Austin et al., 1984;

Smith et al., 1985]. Various methods of determining intermolecular

potentials have been used, either theoretical, based on experimental

information, or combining both approaches fluids [Oh, 2004; Mour-

tis and Rummens, 1977]. Among these methods, inversion of dilute

gas properties has been of particular importance [Vesovic and Wake-
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ham, 1987; Smith, 1987; Maitland et al., 1982, 1985a, b, 1986].

For the noble gases, which have spherically symmetric interactions,

inversion of transport properties data is directly related to the pair

interaction potential u(r). For near-spherical and non-spherical mol-

ecules inversion of transport properties gives an effective spherical

potential ueff (r) related to, but different from, the true pair potential

u(r, ω) which depends on the intermolecular orientation, ω [Haghighi

et al., 2002].

In the present work, first the Wang Chang-Uhlenbeck-de Boer

theory [Wang-Chang et al., 1964] has been applied to evaluate the

various internal degrees of freedom to the thermal conductivity of

N2, O2 and CO2 at zero density. Then, the Rainwater-Friend theory

[Bich and Vogel, 1996] has been applied to evaluate the thermal

conductivity of oxygen and nitrogen in moderately-density regime

at gaseous state. The theories are briefly re-explained in the follow-

ing section.

KINETIC THEORY AND PAIR-INTERACTION 

INTERMOLECULAR POTENTIAL

ENERGY FUNCTION

The intermolecular interaction between two spherical molecules

(or atoms) in the gas phase can be characterized in terms of a pair

potential energy function U(r) which describes the overall resultant

(positive) repulsive energy between the molecules at small separa-

tions r, the resultant (negative) attractive energy at larger distances,

and the asymptotic approach of the resultant attractive energy to

zero at very large separations. Two characteristic features of this

function [Rigby et al., 1984] are, first, the separation at which the

interaction energy passes through zero, this distance being referred

to as the collision diameter σ, and, second, the position of mini-

mum interaction energy V, i.e., of greatest attraction. This position

is referred to as the equilibrium separation rm at which the interac-

tion energy has a value −ε, where ε is termed the well depth. If

U(r) is known, the various transport properties of the system may

be calculated by rigorous kinetic theory, which uses equations involv-

ing collision integrals, Ω
(l, s)

, which are integrals over the full range

of energies, trajectories of collision, and orientations of molecules

during collisions. It should also be mentioned that the indices l, s

specify weighting factors related to the mechanism of transport by

molecular collisions. The Chapman-Enskog solution of the Boltz-

mann kinetic equation for dilute monatomic gases relates these co-

efficients to a series of collision integrals Ω (l, s) [Chapman and Cowl-

ing, 1964]. The collision integrals, Ω (l, s), are defined as [Hirschfelder

et al., 1964]:

(1)

where E is the relative energy of colliding partners. The Q
(l)
(E) is a

transport collision integral that classically is given by the equation

[Hirschfelder et al., 1964],

(2)

in which θ is the relative scattering angle between two colliding par-

tners of energy E and impact parameter b at the gas temperature.

The scattering angle θ is calculated as a function of b and E from

the following equation of motion,

(3)

where the distance of closest approach r0 is the outermost root of

1−b2/r0
2−U(r0)/E=0 (4)

It is worth noting that three successive numerical integrations (i.e.,

Eq. (1)-(3)) are required to obtain the collision integral. Numerical

differentiation and use of the recursion relation can generate collision

integrals higher than that mentioned [Hirschfelder et al., 1964],

(5)

where the reduced collision integral is defined by [Hirschfelder et

al., 1964],

(6)

where σ is the length scaling factor such that U(σ)=0. The reduced

temperature (T*) is [Hirschfelder et al., 1964],

T*=kT/ε (7)

and ε is the energy scaling factor.

The kinetic theory expression for the thermal conductivity coef-

ficient of a pure monatomic dilute gas of molecular mass, m, at the

temperature, T, is [Hirschfelder et al., 1964]

(8)

Here kB is the Boltzmann constant, Ω
(2,2)*

 is reduced thermal con-

ductivity collision integral.

THERMAL CONDUCTIVITY

The subject of transport phenomena [Bird et al., 1960; Brush,

2003; Wakeham, 1992; McCourt, 1992] is a very old one, with some

of topics dating back several centuries. Transport coefficients describe

the process of relaxation to equilibrium from a state perturbed by

application of temperature, pressure, density, velocity or composi-

tion gradients. The theoretical description of these phenomena con-

stitutes a part of non-equilibrium statistical mechanics known as

the kinetic theory. As mentioned in the previous section and with

the related equations having been written, the ultimate purpose of

this theory is to relate the macroscopic properties of the individual

molecules and their interaction potentials. The kinetic theory of gases

yields theoretical expressions for the viscosity, thermal conductiv-

ity and other transport coefficients [Choh and Uhlenbeck, 1958;

Bogolubov, 1962; Cohen, 1965] for gases, the results of which are

in reasonably good agreement with experiment. The kinetic theory

treatment of transport properties in gases is grossly complicated from

mathematical and physical viewpoints [Taxman, 1958]. The rigorous

expressions underlying transport phenomena in gases were worked

out in 1860 and 1870 by Maxwell and Boltzmann, but it was not

until 1917 when Chapman and Enskog, working independently,

solved the equations [Chapman and Cowling, 1964]. In general,

the first improvement on the Enskog dense-gas theory must lie in

avoiding the binary collision hypothesis, which would not be ex-

pected to hold in a dense fluid where higher-order collisions are
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expected. Some attempts at dealing with this problem have been

made by Choh and Uhlenbeck [1958], Cohen [1965] and Bogol-

ubov [1962]. In general, these theories are based on density expan-

sions for λ in terms of a series expansion in the density

(9)

where the first term λ
(0)

 is the dilute-gas transport coefficient and

the second term from contributions from collision transfer and also

from ternary collisions. The Bλ and Cλ are called the transport virial

coefficients because of the analogy with the coefficients in the famil-

iar virial expansion of the pressure. The aforesaid expansion in pow-

ers of the density is also called initial density dependence.

On the other hand, in the Wang Change-Uhlenbeck-de Boer

(WCUB) version of the kinetic theory of gases [Wang-Chang et

al., 1964], each molecular degree of freedom contributes separately

to the thermal conductivity, and hence the thermal conductivity is

written as a sum of contributions from translational, rotational, vibra-

tional and electronic degrees of freedom:

(10)

To a first approximation these contributions are independent except

for translational and rotational contributions which their interaction

must be taken into account. Moreover, the translational contribu-

tion is like that of a monatomic gas and the other contributions cor-

respond to the transport of molecular internal energy by a diffusion

mechanism. That is, each internal degree of freedom is approximated

by the mass diffusion coefficient, D. It should be mentioned that

electronic energy rarely plays any role; it is therefore a reasonable

approximation to take the electronic degrees of freedom as inde-

pendent and to take Delec≈D. Also, it is a good approximation to

take Dvib≈D.

So the problem of prediction of thermal conductivity using WCUB

theory reduces to the determination of the translational-rotation inter-

action and the diffusion coefficients for rotational energy. Transla-

tion-rotation interaction is denoted by ζrot, which is called rotational

relaxation. Uribe and co-workers [Mason and Uribe, 1996] calcu-

lated the behavior of Drot from ζrot.

The formulae needed for the calculation of λ are given below

[Mason and Uribe, 1996]:

(11)

(12)

(13)

(14)

where A* is the ratio of Ω
(2, 2)*

 to Ω
(1, 1)*

 and D
ex

rot is the diffusion

coefficient for rotational energy with a correction for resonant ex-

change included. The correction terms ∆rot and ∆spin are

(15)

(16)

The Cvib was estimated through the following equation obtained from

the statistical mechanics [Mc Quarrie, 1973]:

(17)

Here, the symbol Θvj identifies the characteristic vibrational tem-

perature for the vibrational degree of freedom j [Mc Quarrie, 1973].

The temperature dependence of ζrot is given by [Mason and Uribe,

1996]:

(18)

The correlation for Drot in terms of ζrot is given in two parts: a low-

temperature part [Mason and Uribe, 1996], which switches to high

temperature result of Sandler [Mason and Uribe, 1996] at a reduced

crossover temperature T*
cross,

For T*≤T*
cross

(19)

For T*≥T*
cross

(20)

The resonant energy exchange corrections to Drot depend on the mole-

cular dipole and quadrupole moments.

(21)

(22)

(23)

(24)

where Θ is the quadrupole and θrot=η
2/2kI is the characteristic ro-

tational temperature, in which I is the molecular moment of inertia.

The quantities gµθ, gµµ, gθθ are dimensionless factors of order unity

that correct for the replacement of quantum-mechanical summa-

tions by integrations. Its high-temperature asymptotic form is [Mason

and Uribe, 1996]:

gθθ=exp(−13θ
rot

/6T)[1−(4θ
rot

/3T)+……] (25)
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/3T)+……] (27)

which are sufficiently accurate for most purposes. It should also be

noted that in the aforesaid equations η
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and self-diffusion coefficients at zero density, respectively. In the

cases of nitrogen, oxygen and carbon dioxide there are only qua-

drupole moments which must be considered.

INVERSION TECHNIQUE

In the interest of brevity, only a brief description of the inversion

technique will be given here. The inversion technique is initiated

by estimating Gη, an inversion function, from an initial model po-

tential such as the LJ(12-6). The inversion function is a function of

the reduced temperature (T*) alone. We have estimated this func-

tion using the LJ (12-6) model as the initial model. Given a set of

reduced viscosity coefficient collision integrals, Ω
(2, 2)*

 over a wide

range of reduced temperature from the extended law of correspond-

ing states [Bzowski et al., 1990] on the one hand, and estimating

the Gη function from initial model potential LJ(12-6) on the other,

it is possible to transform a pair of data (Ω
(2, 2)*

 , T*) to V/ε versus r/

σ on the potential energy curve using the essential equations of the

INVERSION method. Now, we can marshal the essential steps of

the INVERSION procedure.

For molecules which interact with an inverse power potential

we can write:

U(r)=C
m
/rm (28)

where Cm is a constant having both positive and negative values,

and r is inter-nuclear distance. It has been shown that for molecules

that interact with an inverse power law there is a relation between

temperature and r as below [Rigby et al., 1984]:

Ω
(2, 2)

(T)=(C
m
/kT)

2/m
F(m) (29)

where F(m) is a constant. We define characteristic values of sepa-

ration r, such that

r=(Ω
(2, 2)

(T)/π)
1/2

(30)

and noting that U(r)=Cm/rm, and we obtain:

[r(T)]2=(C
m
/kT)

2/m
F(m)=(U(r)/C

m
)
−2/m

(31)

thus

U(r)=(F
m
)
−m/2

kT (32)

and writing F
−m/2

 as G we obtain

U(r)=G(m)/kT (33)

for inverse power potential functions, G is a numerical constant.

For the sake of simplicity we use G instead of Gη in the latest ex-

pression. For realistic potentials it is found that G varies with tem-

perature in complicated way, since the collisions have different ener-

gies and probe different parts of the potential function (which, in

terms of the model, have different effective values of m). It is also

found that the variation of G with temperature is very similar for

all realistic potential functions [Rigby et al., 1984] and we may write

U(r)=G0(T)/kT, where G0(T) is calculated by using an approximate

potential function U0(r) such as a LJ(12-6) potential. The details of

the INVERSION procedure, which has been applied on the Extended

Principle of Corresponding States [Bzowski et al., 1990], have been

described in Fig. 1. The considerable practical success of the inver-

sion procedure comes from universality of the inversion function

G(T*) among a whole class of potential functions possessing repul-

sive and attractive branches joined by a single minimum.

As mentioned in the previous paragraphs, it is clear that for the

chosen values of distance, which have been obtained from the cor-

related values of  by the corresponding states principle, the

value of Vn
*(r*) does not change much regardless of the value of

number of iterations chosen (n>2). The details of the inversion (itera-

tion) steps are given in Fig. 1.

Ωcorr.

* 2 3,( )

Fig. 1. Flow chart of the iteration steps in the inversion method.
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In this work, the three consecutive integrals, Eqs. (2)-(4), are eval-

uated by using numerical integration [Clenshaw and Curtis, 1960]

and the computer program developed by O’Hara and Smith [1970,

1971] and Neufeld and Aziz [1972]. It may also be pointed out that

the integral of deflection angle, Eq. (3), is integrated by the trape-

zium rule [Buchnan and Turner, 1992; Conte and de Boor, 1980;

Table 1. The reduced collision integrals and their ratios for the N2 system at zero density.

    

Log T* <Ω
*(1, 1)

> <Ω
*(2, 2)

> A* B* C* E* F*

0.0 1.5810 1.4167 1.1159 1.2056 0.8421 0.8759 0.9188

0.1 1.4143 1.2746 1.1096 1.1735 0.8528 0.8832 0.9254

0.2 1.2768 1.1569 1.1036 1.1468 0.8671 0.8952 0.9350

0.3 1.1666 1.0610 1.0996 1.1269 0.8825 0.9090 0.9465

0.4 1.0797 0.9834 1.0980 1.1134 0.8973 0.9226 0.9584

0.5 1.0110 0.9202 1.0988 1.1054 0.9101 0.9344 0.9698

0.6 0.9560 0.8679 1.1015 1.1014 0.9204 0.9438 0.9799

0.7 0.9109 0.8238 1.1058 1.1007 0.9280 0.9509 0.9884

0.8 0.8728 0.7853 1.1114 1.1033 0.9332 0.9562 0.9949

0.9 0.8401 0.7507 1.1191 1.1103 0.9358 0.9605 0.9993

1.0 0.8112 0.7182 1.1294 1.1220 0.9358 0.9633 1.0026

1.1 0.7844 0.6865 1.1425 1.1360 0.9332 0.9631 1.0061

1.2 0.7568 0.6547 1.1560 1.1460 0.9291 0.9584 1.0117

1.3 0.7255 0.6225 1.1655 1.1456 0.9252 0.9495 1.0190

1.4 0.6893 0.5907 1.1669 1.1323 0.9239 0.9394 1.0263

1.5 0.6494 0.5609 1.1578 1.1086 0.9267 0.9318 1.0312

1.6 0.6089 0.5344 1.1394 1.0797 0.9339 0.9294 1.0325

1.7 0.5712 0.5123 1.1151 1.0512 0.9444 0.9331 1.0307

1.8 0.5392 0.4950 1.0891 1.0273 0.9566 0.9420 1.0270

1.9 0.5138 0.4825 1.0651 1.0096 0.9687 0.9538 1.0226

2.0 0.4953 0.4739 1.0450 0.9982 0.9793 0.9661 1.0186

A
* Ω

 2 2,( )*
〈 〉

Ω
 1 1,( )*

〈 〉
------------------,≡ B

* 5 Ω
 1 2,( )*

〈 〉  − 4 Ω
 1 3,( )*

〈 〉

Ω
 1 1,( )*

〈 〉
------------------------------------------------,≡ C

* Ω
 1 2, *

〈 〉

Ω
 1 1, *

〈 〉
----------------≡ , E

* Ω
 2 3,( )*

〈 〉

Ω
 2 2,( )*

〈 〉
------------------,≡ F

* Ω
 3 3,( )*

〈 〉

Ω
 1 1,( )*

〈 〉
------------------.≡

Table 2. Same as Table 1 for O2 system

Log T* <Ω
*(1, 1)

> <Ω
*(2, 2)

> A* B* C* E* F*

0.0 1.5732 1.4100 1.1158 1.2048 0.8482 0.8796 0.9226

0.1 1.4119 1.2734 1.1087 1.1729 0.8577 0.8864 0.9280

0.2 1.2781 1.1592 1.1025 1.1463 0.8709 0.8979 0.9368

0.3 1.1705 1.0657 1.0984 1.1263 0.8855 0.9113 0.9478

0.4 1.0853 0.9895 1.0968 1.1125 0.8996 0.9242 0.9596

0.5 1.0175 0.9272 1.0973 1.1037 0.9120 0.9354 0.9709

0.6 0.9629 0.8757 1.0996 1.0989 0.9221 0.9444 0.9809

0.7 0.9179 0.8322 1.1030 1.0969 0.9299 0.9513 0.9893

0.8 0.8797 0.7944 1.1074 1.0974 0.9354 0.9563 0.9960

0.9 0.8465 0.7607 1.1128 1.1002 0.9389 0.9600 1.0011

1.0 0.8169 0.7297 1.1194 1.1052 0.9405 0.9624 1.0050

1.1 0.7894 0.7004 1.1270 1.1107 0.9405 0.9627 1.0089

1.2 0.7621 0.6720 1.1340 1.1132 0.9398 0.9604 1.0137

1.3 0.7332 0.6445 1.1377 1.1090 0.9394 0.9555 1.0197

1.4 0.7020 0.6183 1.1353 1.0966 0.9408 0.9499 1.0255

1.5 0.6690 0.5942 1.1258 1.0776 0.9448 0.9460 1.0295

1.6 0.6362 0.5732 1.1099 1.0557 0.9516 0.9456 1.0307

1.7 0.6060 0.5560 1.0900 1.0348 0.9602 0.9494 1.0291

1.8 0.5802 0.5427 1.0692 1.0176 0.9696 0.9566 1.0256

1.9 0.5598 0.5330 1.0501 1.0050 0.9785 0.9657 1.0213

2.0 0.5447 0.5266 1.0343 0.9968 0.9863 0.9750 1.0173



6 B. Haghighi et al.

January, 2007

Dorn and Mc Cracken, 1972]. The cross-section, Eq. (2), and the

collision integrals, Eq. (1), are evaluated by using a Gauss-Legendre

quadratrue (numerical integration) [Press et al., 1994; Smith, 1995;

Hornbeck, 1975; Pachmer, 1984].

In the present work, we obtained accurate reduced potential en-

ergies for nitrogen and oxygen at low density by direct inversion

of the viscosity collision integral equation. The collision integrals

and their ratios are given in Tables 1-3.

RESULTS AND DISCUSSION

As mentioned before, the problem of obtaining the interaction

potential energy is the extraction of information about the force by

analyzing the bulk properties. The degree of success will depend

on the accuracy of both the measurements and theory connecting

the force to macroscopic properties, and on the sensitivity of this

connection. The transport coefficients of dilute gases, especially

viscosity, which depends on binary interaction, satisfy the above

condition. It is worth noting that the terms “dilute” or “low-density”

gas represent a real physical situation, whereas the frequently-used

expression zero-density limit is related to results of a mathematical

extrapolation of a density series of a particular transport property at

constant temperature to zero density. The derived value is assumed

to be identical with the true value for the dilute-gas state, a state-

ment that in most cases turns out to be correct. In this respect, the

inversion procedure plays an important role for generating a like-

molecule potential from the viscosity data and their corresponding

states correlation. This, in turn, permits us to calculate collision inte-

grals, and, consequently, the transport properties more accurately

than is possible by correlations of the corresponding states. In the

case of the corresponding states principle, it must be mentioned that

since the functional equation obtained from this principle applies in

a more limited form to molecular gases than to noble gases, the a-

rithmetic mean of the functions should be used for the components

of gas mixtures. Also, we are confined only to T*
≥1.0, because vis-

cosity collision integrals for molecular gases at low temperatures

do not exist; consequently, in order to proceed to the next iteration

it is necessary to extrapolate V(r) in the long-range region (low tem-

perature). The extrapolation function that we have used is V*=−C6u
6,

where C6 is the dispersion coefficient and u is the reciprocal of the

intermolecular distances, both in atomic units. It is remarkable that

the inversion procedure is not unduly sensitive to the nature of the

extrapolating function. Regarding the aforesaid discussion and exist-

ence of corresponding states viscosity coefficients at high tempera-

tures (repulsive region), the inversion was established. It should be

mentioned that although we used just V*=−C6u
6
 as the extrapolat-

ing function at long range region, the inversion function procedure

is not unduly sensitive to the nature of the used extrapolating func-

tions. This is due to the fact that the potential will adjust itself dur-

ing iteration steps (as depicted in the flow chart). As mentioned before,

the inversion function Gη(T
*) is found to be remarkably insensitive to

the precise nature of the potential, a feature which greatly enhances

the convergence rate of the inversion. It is worthwhile to note that

for a given transport property, Gη(T
*) is determined by the ratio of

the impact parameter to the distance of closest approach for a col-

lision at an energy (s+1)kT, which results in a deflection angle of

θ ~π −1 [Maitland et al., 1985b]. It is remarkable that in s has its

usual meaning, which was pointed out in the previous section 2 (§

Kinetic Theory and Pair-Interaction Intermolecular Potential Energy

Function). Maintaining this deflection angle constant as the potential

changes requires the impact parameter to be changed. The distance

of closest approach will change in the same direction and by roughly

≅

Table 3. Same as Table 1 for CO2 system

Log T* <Ω
*(1, 1)

> <Ω
*(2, 2)

> A* B* C* E* F*

0.0 1.4141 1.5798 1.1172 1.2088 0.8511 0.8815 0.9245

0.1 1.2789 1.4198 1.1102 1.1779 0.8590 0.8877 0.9283

0.2 1.1647 1.2866 1.1046 1.1521 0.8708 0.8988 0.9360

0.3 1.0702 1.1790 1.1016 1.1327 0.8842 0.9116 0.9467

0.4 0.9924 1.0929 1.1012 1.1187 0.8974 0.9236 0.9589

0.5 0.9284 1.0234 1.1023 1.1085 0.9093 0.9334 0.9712

0.6 0.8752 0.9660 1.1038 1.1005 0.9196 0.9409 0.9824

0.7 0.8304 0.9174 1.1047 1.0937 0.9282 0.9467 0.9918

0.8 0.7923 0.8755 1.1050 1.0886 0.9354 0.9516 0.9988

0.9 0.7593 0.8392 1.1053 1.0864 0.9411 0.9565 1.0033

1.0 0.7301 0.8081 1.1069 1.0882 0.9450 0.9614 1.0058

1.1 0.7034 0.7813 1.1108 1.0931 0.9470 0.9649 1.0077

1.2 0.6782 0.7569 1.1159 1.0971 0.9474 0.9654 1.0110

1.3 0.6540 0.7323 1.1197 1.0956 0.9474 0.9624 1.0162

1.4 0.6308 0.7058 1.1188 1.0861 0.9485 0.9576 1.0219

1.5 0.6094 0.6774 1.1116 1.0699 0.9518 0.9536 1.0264

1.6 0.5905 0.6486 1.0984 1.0507 0.9574 0.9526 1.0281

1.7 0.5748 0.6215 1.0813 1.0321 0.9649 0.9553 1.0270

1.8 0.5626 0.5980 1.0630 1.0165 0.9730 0.9613 1.0239

1.9 0.5537 0.5791 1.0458 1.0051 0.9808 0.9691 1.0200

2.0 0.5477 0.5650 1.0315 0.9976 0.9877 0.9773 1.0161
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the same magnitude; due to this small deflection angle, the impact

parameter and the distance of closest approach are similar. One there-

fore expects their ratios, and hence the Gη(T
*) function (and conse-

quently extrapolated function), to be essentially independent of the

precise nature of the potential.

Based upon the aforesaid paragraph, a conclusion central to our

study is that it seems to describe an interesting application of the

inversion method as a universal form. Hence, toward the eventual

goal of a fundamental and unambiguous methodology of the inver-

sion procedure, the objective of the present paper is universality of

the application of inversion method.

The accuracies of the calculated transport properties arise from

the intermolecular potential energy obtained from the inversion pro-

cedure. In the present study, the direct inversion procedure was ap-

plied to corresponding states of viscosity given by Bzowski et al.

[1990] to generate a unique spherically effective pair potential en-

ergies, which we claim are reliable. This claim is based on these

facts that the revision of the extended principle of the correspond-

ing states by Bzowski et al. [1990] correlates the viscosity of the

molecules and their mixtures at low density over a very wide tem-

perature range with very good accuracies and characterizes each

binary interaction with the aid five classical-material parameters σ,

ε, ρ*, C6
*, and V0

* [Najafi et al., 1983].

It should be mentioned that the vibrational frequencies neces-

sary for calculating the vibrational part of the thermal conductivity

were taken from McQuarrie [1973]. It should also be pointed out

that the contribution to λelec is small because the corresponding con-

tributions to the heat capacity are small for the range of tempera-

tures considered here. Henceforth, in the present calculations, we

neglected the term λelec.

Terms ∆ex

µθ
 and ∆ex

µµ
 are zero for nitrogen and oxygen molecules

because they have no dipole moment. Therefore, for a given tem-

perature, the first step is the calculation of ζrot and Drot from Eqs.

(18) and (19) or (20). Drot can be used to calculate D
ex

rot via Eqs.

(21)-(27). From ζrot and Drot, ∆rot and ∆spin are calculated by the use

of Eqs. (15) and (16). Applying Dex
rot and ∆rot values to Eqs. (11)-

(14), the thermal conductivity λ can computed. The viscosity coef-

ficient η and self-diffusion coefficient D at zero density needed in

the calculation of the thermal conductivity coefficient were taken

from the present calculations. After calculating the various contri-

butions to the thermal conductivity at the zero density due to inter-

nal degree of freedom then, we calculated the thermal conductivity

at moderate density by the correlation which has been proposed by

Najafi et al. [Ghayeb, 2003, 2004].

Deviation plots for thermal conductivity coefficients of O2, N2

and CO2 systems are shown in Figs. 2-4.

CONCLUSIONS

We have used the reasonably effective potential energy function

to obtain improved collision integrals needed for the calculation of

the transport properties. The main advantage of the ratios of the col-

lision integrals obtained from the inversion of the corresponding

states of viscosity is that it is more accurate than those obtained from

other corresponding states because measurements of viscosity are

more practical than those of other transport properties.

The calculation of thermal conductivity from the INVERTED

potential by means of WCUB approach, and subsequent compari-

son with the experimentally based values, has been shown to pro-

vide a powerful test of the accuracy of the INVERTED potential.

It is an advancement over the traditional approaches that consider a

potential function with several parameters and try to adjust them

using experimental results. This scheme provides an accurate poten-

tial energy and allows determination of collision integrals more ac-

curately than is possible by the extended law of corresponding states.

The direct inversion of the viscosity collision integral correlation

obtained from an extended law of corresponding states is obvi-

ously a powerful method for establishing an accurate unlike-pair
Fig. 2. Deviation values of thermal conductivity for O2. The experi-

mental values are adopted from Laesecke et al. [1990].

Fig. 3. Deviation values of thermal conductivity for N2. The experi-
mental values are adopted from Stephan et al. [1987].

Fig. 4. Deviation values of thermal conductivity for CO2. The ex-
perimental values are adopted from Millat et al. [1987].
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potential energy. The accurate potential energy obtained by inver-

sion of viscosity data can reproduce (within precision of the experi-

mental data) all transport properties. Our estimated accuracy is within

10% for thermal conductivity.
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NOMENCLATURE

b : impact parameter

l, s : specify weighting factors related to the mechanism of trans-

port by molecular collisions

r : intermolecular distance

k : Boltzmann constant

m : molecular mass

u : reciprocal of the intermolecular distance

C6 : dispersion coefficient 

E : relative kinetic energy

G : inversion function

T : absolute temperature

V(r) : intermolecular potential energy

A*, B*, C*, E*, F* : ratios of collision integral

T* : reduced temperature

Q
(l)
(E) : transport collision integral

D
(0)

: self-diffusion coefficient at zero density

Drot : coefficient for diffusion of molecular rotational energy

Dvib : coefficient for diffusion of molecular vibrational energy

Delec : coefficient for diffusion of molecular electronic energy

Dex
rot : diffusion coefficient for rotational energy including correc-

tion for resonant exchange

Cvib : molar heat capacity due to molecular vibration

Crot : molar heat capacity due to molecular rotation

Celec : molar heat capacity due to molecular electronic degrees of

freedom

Bλ : transport virial coefficient

Cλ : transport virial coefficient

gµµ : temperature-dependent dimensionless factor needed in cal-

culation of ∆ex

µµ

gµθ : temperature-dependent dimensionless factor needed in cal-

culation of ∆ex

µθ

gθθ : temperature-dependent dimensionless factor needed in cal-

culation of ∆ex

θθ

Greek Letters

ε : energy scaling factor

σ : length scaling factor

θ : relative scattering angle between two colliding partners

Ω
(l, s)

: collision integral

Ω
(l, s)*

: reduced collision integral

Ω
(1, 1)*

: reduced collision integral for diffusion

Ω
(2, 2)*

: reduced collision integral for viscosity (or thermal conduc-

tivity)

η(0) : viscosity coefficient at zero density

λ
(0)

: thermal conductivity at zero density

λtr.

(0)
: contribution of molecular translational energy to thermal

conductivity at zero density

λrot.

(0)
: contribution of molecular rotational energy to thermal con-

ductivity at zero density

λvib.

(0)
: contribution of molecular vibrational energy to thermal con-

ductivity at zero density

λele.

(0)
: contribution of molecular electronic energy to thermal con-

ductivity at zero density

∆ex

µθ
: correction for resonant exchange of molecular rotational

energy due to dipole-quadrupole interactions

∆ex

θθ
: correction for resonant exchange of molecular rotational

energy due to quadrupole-quadrupole interactions

∆ex

µµ
: correction for resonant exchange of molecular rotational

energy due to dipole-dipole interactions

ζrot : collision number for rotational relaxation

ζrot
∞ : high-temperature asymptotic value of collision number for

rotational relaxation

∆rot : correction to λ for interaction of molecular rotational and

translational energy

∆spin : correction to λ for alignment of molecular angular momen-

tum (spin polarization)

Θ : quadrupole moment

θrot=η
2/2kI : characteristic rotational temperature

θvj : characteristic vibrational temperature

ρ : mass density of gas

Subscripts

Exp. : experimental

Corr. : corresponding states

Calc. : calculated
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