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Abstract—Thermal conductivities coefficients for gaseous state of N,, O, and CO, at zero density are determined
by the inversion technique. The Lennard-Jones 12-6 (LJ 12-6) potential energy function is used as the initial model
potential required by the technique. The Wang Chang-Uhlenbeck-de Boer (WCUB) approach of the kinetic theory of
gases has been used for calculating the contribution of molecular degree of freedom to the thermal conductivity of N,,
0O, and CO,. Also, the initial density dependence of gaseous thermal conductivity according to the Rainwater-Friend
theory, which was given by Najafi et al., has been considered for N,, O, and CO,.
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INTRODUCTION

Thermodynamics deals with the general principles and laws that
govemn the behavior of matter and with the relationships between
material properties. The origins of these laws and quantitative val-
ues for the properties are provided by statistical mechanics, which
analyses the interaction of molecules and provides a detailed descrip-
tion of their behavior. A macroscopic theory of thermodynamics,
either reversible or irreversible, is useful on its own for a large class
of physical problems we encounter in daily life and natural phe-
nomena in general.

Thermodynamics applies to all types of systems in microscopic
[Hill, 1960] or macroscopic aggregation [Kirkwood and Oppenhiem,
1960] and also provides a theoretical framework for correlating the
equilibrium properties of any system.

Meanwhile, a newly emerging field of irreversible thermody-
namics, in which linear irreversible thermodynamics are extended
to the nonlinear regime and macroscopic phenomena far removed
from equilibrium has ambiguity and non-uniqueness [Hwang, 2005].

The thermodynamic properties of fluids are of continuing inter-
est for theoretical [Kwon et al., 1997, 2005; Jang et al., 2003; Oh,
2004, 2005; Oh and Park, 2005] and industrial applications [Park
and Gembhling, 1995; Park and Lee, 1995; Kang et al., 1995]. The
urgent demand of industry for accurate values and estimation schemes
of thermodynamic properties [Oh, 2004, 2005; Oh and Park, 2005]
is increasing, because working fluids are often mixtures. The need
for sufficient data to reliably estimate thermodynamic properties of
mixtures remains today a major industrial problem. Measurements
are costly and time consuming. Thermodynamic properties often
determine the feasibility of a process. Transport properties deter-
mine how large the equipment should be or the time scale of the
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operation. Transport properties play an important role in many natu-
ral and technical processes. There are three transport properties of
great concem: diffusion, viscosity and thermal conductivity. Nowa-
days, a large body of research [Bae et al., 1994a, b; Kang and Sangani,
2002] has been conducted in order to consider more carefully the
effects of transport properties on the process and product design.

When first approached, kinetic theory of gases can seem like a
bewildering collection of isolated facts. With deep study, however,
it becomes evident that there only a few fundamental concepts that
underline all facts and events in kinetic theory [Chapman and Cowl-
ing, 1964; Hirschfelder et al., 1964]. Far from being a collection of
isolated facts, kinetic theory is a well-organized logical subject uni-
fied by a few broad themes. When these themes are understood,
learning kinetic theory becomes much easier [Kang and Sangani,
2002; Xiufeng and Xi, 1996; Barker et al., 1964; Vasserman and
Khasilev, 1992; Amoros et al., 1992].

On the other hand, intermolecular forces are a fundamental in-
gredient for both equilibrium and transport properties such as cal-
culation of partial molar volumes [Kwon et al., 2005], transport prop-
erties of simple fluids [Eskandari Nasrabad and Deiters, 2003; Es-
kandari Nasrabad et al., 2004; Xiufeng and Xi, 1996; Barker et al.,
1964; Vasserman and Khasilev, 1992; Amoros and Maseo, 1992]
and computer simulations [Laghaei et al., 2005a, b, 2006; Eskan-
dari Nasrabad et al., 2005, 2006; Erpenbeck, 1983; Cumming and
Evans, 1992; Maghari and Yeganegi, 2000a, b] of the fluid state.
Knowledge of pair interactions between molecules is of great im-
portance in the theory of fluids. Hence, the application of the theory
of fluids to real substances relies on a knowledge of the interac-
tions between real molecules [Trusler, 1991; Austin et al., 1984;
Smith et al., 1985]. Various methods of determining intermolecular
potentials have been used, either theoretical, based on experimental
information, or combining both approaches fluids [Oh, 2004; Mour-
tis and Rummens, 1977]. Among these methods, inversion of dilute
gas properties has been of particular importance [Vesovic and Wake-
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ham, 1987; Smith, 1987; Maitland et al., 1982, 1985a, b, 1986].
For the noble gases, which have spherically symmetric interactions,
inversion of transport properties data is directly related to the pair
interaction potential u(r). For near-spherical and non-spherical mol-
ecules inversion of transport properties gives an effective spherical
potential u,,(r) related to, but different from, the true pair potential
u(t, w) which depends on the intermolecular orientation, @ [Haghighi
et al.,, 2002].

In the present work, first the Wang Chang-Uhlenbeck-de Boer
theory [Wang-Chang et al., 1964] has been applied to evaluate the
various internal degrees of freedom to the thermal conductivity of
N,, O, and CO, at zero density. Then, the Rainwater-Friend theory
[Bich and Vogel, 1996] has been applied to evaluate the thermal
conductivity of oxygen and nitrogen in moderately-density regime
at gaseous state. The theories are briefly re-explained in the follow-
ing section.

KINETIC THEORY AND PAIR-INTERACTION
INTERMOLECULAR POTENTIAL
ENERGY FUNCTION

The intermolecular interaction between two spherical molecules
(or atoms) in the gas phase can be characterized in terms of a pair
potential energy function U(r) which describes the overall resultant
(positive) repulsive energy between the molecules at small separa-
tions 1, the resultant (negative) attractive energy at larger distances,
and the asymptotic approach of the resultant attractive energy to
zero at very large separations. Two characteristic features of this
function [Rigby et al., 1984] are, first, the separation at which the
interaction energy passes through zero, this distance being referred
to as the collision diameter o, and, second, the position of mini-
mum interaction energy V, i.e., of greatest attraction. This position
is referred to as the equilibrium separation r,, at which the interac-
tion energy has a value —¢& where ¢ is termed the well depth. If
U(r) is known, the various transport properties of the system may
be calculated by rigorous kinetic theory, which uses equations involv-
ing collision integrals, 2“”, which are integrals over the full range
of energies, trajectories of collision, and orientations of molecules
during collisions. It should also be mentioned that the indices /, s
specify weighting factors related to the mechanism of transport by
molecular collisions. The Chapman-Enskog solution of the Boltz-
mann kinetic equation for dilute monatomic gases relates these co-
efficients to a series of collision integrals £2*¥ [Chapman and Cowl-
ing, 1964]. The collision integrals, £2**, are defined as [Hirschfelder
etal., 1964]:

s+l

QP =[(s+D)!KT)T ' ["Q"(B)e *"E™dE 1)
0
where E is the relative energy of colliding partners. The Q(“(E) isa

transport collision integral that classically is given by the equation
[Hirschfelder et al., 1964],

Q"(B)=27{1-[1+(=1)2(1+1)]} ' ['(1-cos'O)bdb )
0
in which @1is the relative scattering angle between two colliding par-
tners of energy E and impact parameter b at the gas temperature.

The scattering angle @is calculated as a function of b and E from
the following equation of motion,
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&(b,E)=7-2b[[1-b/*~U()/E] "dr/r® 6)

where the distance of closest approach r, is the outermost root of
1-b/2— U(t,/E=0 @)

It is worth noting that three successive numerical integrations (i.e.,
Eq. (1)~(3)) are required to obtain the collision integral. Numerical
differentiation and use of the recursion relation can generate collision
integrals higher than that mentioned [Hirschfelder et al., 1964],

Q= [2*””“)[ 1+ (S%J (dlng‘“’f’/dlnT‘)} ®)

where the reduced collision integral is defined by [Hirschfelder et
al., 1964,

Q=070 ©)

where ois the length scaling factor such that U(o)=0. The reduced
temperature (T") is [Hirschfelder et al., 1964],

T=kT/s %)

and ¢is the energy scaling factor.

The kinetic theory expression for the thermal conductivity coef-
ficient of a pure monatomic dilute gas of molecular mass, m, at the
temperature, T, is [Hirschfelder et al., 1964]

75 (KyT/72m)"”

AT)=——=—"—
645 Q%

®
Here k; is the Boltzmann constant, %" " is reduced thermal con-
ductivity collision integral.

THERMAL CONDUCTIVITY

The subject of transport phenomena [Bird et al., 1960; Brush,
2003; Wakeham, 1992; McCourt, 1992] is a very old one, with some
of topics dating back several centuries. Transport coefficients describe
the process of relaxation to equilibrium from a state perturbed by
application of temperature, pressure, density, velocity or composi-
tion gradients. The theoretical description of these phenomena con-
stitutes a part of non-equilibrium statistical mechanics known as
the kinetic theory. As mentioned in the previous section and with
the related equations having been written, the ultimate purpose of
this theory is to relate the macroscopic properties of the individual
molecules and their interaction potentials. The kinetic theory of gases
yields theoretical expressions for the viscosity, thermal conductiv-
ity and other transport coefficients [Choh and Uhlenbeck, 1958;
Bogolubov, 1962; Cohen, 1965] for gases, the results of which are
in reasonably good agreement with experiment. The kinetic theory
treatment of transport properties in gases is grossly complicated from
mathematical and physical viewpoints [Taxman, 1958]. The rigorous
expressions underlying transport phenomena in gases were worked
out in 1860 and 1870 by Maxwell and Boltzmann, but it was not
until 1917 when Chapman and Enskog, working independently,
solved the equations [Chapman and Cowling, 1964]. In general,
the first improvement on the Enskog dense-gas theory must lie in
avoiding the binary collision hypothesis, which would not be ex-
pected to hold in a dense fluid where higher-order collisions are
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expected. Some attempts at dealing with this problem have been
made by Choh and Uhlenbeck [1958], Cohen [1965] and Bogol-
ubov [1962]. In general, these theories are based on density expan-
sions for A in terms of a series expansion in the density

1=1"1+B,p+C,00+...) )

where the first term A is the dilute-gas transport coefficient and
the second term from contributions from collision transfer and also
from ternary collisions. The B, and C, are called the transport virial
coefficients because of the analogy with the coefficients in the famil-
iar virial expansion of the pressure. The aforesaid expansion in pow-
ers of the density is also called initial density dependence.

On the other hand, in the Wang Change-Uhlenbeck-de Boer
(WCUB) version of the kinetic theory of gases [Wang-Chang et
al.,, 1964], each molecular degree of freedom contributes separately
to the thermal conductivity, and hence the thermal conductivity is
written as a sum of contributions from translational, rotational, vibra-
tional and electronic degrees of freedom:

) ) 0 (0) (0)
A7 =2+ A0+ Ay + A (10)

To a first approximation these contributions are independent except
for translational and rotational contributions which their interaction
must be taken into account. Moreover, the translational contribu-
tion is like that of a monatomic gas and the other contributions cor-
respond to the transport of molecular internal energy by a diffusion
mechanism. That is, each internal degree of freedom is approximated
by the mass diffusion coefficient, D. Tt should be mentioned that
electronic energy rarely plays any role; it is therefore a reasonable
approximation to take the electronic degrees of freedom as inde-
pendent and to take D, ~D. Also, it is a good approximation to
take D,,~D.

So the problem of prediction of thermal conductivity using WCUB
theory reduces to the determination of the translational-rotation inter-
action and the diffusion coefficients for rotational energy. Transla-
tion-rotation interaction is denoted by ¢, which is called rotational
relaxation. Uribe and co-workers [Mason and Uribe, 1996] calcu-
lated the behavior of D,,, from ¢,,..

The formulae needed for the calculation of A are given below
[Mason and Uribe, 1996]:

elec’

)
m/l\'ib. - g *C\'[b

(1n
77(0)1(3 5 kg
mA% 6, -Cu (2
U(O)kB 5 k/z
mA? 5(3 )
— 2 === A | (1+A,,, 3
3 (1+Ay0) (13)
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where A" is the ratio of 2% to """ and D is the diffusion
coefficient for rotational energy with a correction for resonant ex-
change included. The correction terms A, and A, ;, are

2 C,-o(é 7 po,)

rot — I+ 2 (éCm, +pD,01)
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(15)

5, C..\pD,
CS i (_ + 7 0/) rot
P ko) ®
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(16)

The C,;, was estimated through the following equation obtained from
the statistical mechanics [Mc Quarrie, 1973]:

exp(—0,/T)
[1-exp(- @/T)]’

k
C./R=>(6,/T) an
j=1
Here, the symbol &), identifies the characteristic vibrational tem-
perature for the vibrational degree of freedom j [Mc Quarrie, 1973].
The temperature dependence of ¢, is given by [Mason and Uribe,
1996]:

312 2 32
@:H ”* l,2+(2+1)l*+”;—ﬂ2 (18)
S 2T 4T (1Y

The correlation for D, in terms of &, is given in two parts: a low-
temperature part [Mason and Uribe, 1996], which switches to high
temperature result of Sandler [Mason and Uribe, 1996] at a reduced
crossover temperature T,

For T'<T;

cross

B (£, (&) ")(1.122+4.552/T) (19)
i

For T">T,,

© .
pnl(or;f=/%(1+0.27/gn,—o.44/§fu,—o.90/g:,,,) 0)

The resonant energy exchange corrections to D,, depend on the mole-
cular dipole and quadrupole moments.
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where @ is the quadrupole and 8, =17/2KI is the characteristic ro-
tational temperature, in which I is the molecular moment of inertia.
The quantities g*°, g, g” are dimensionless factors of order unity
that correct for the replacement of quantum-mechanical summa-
tions by integrations. Its high-temperature asymptotic form is [Mason
and Uribe, 1996]:

gP=exp(— 130,/6T)[1-(46,/3T)+......] 5)
g=exp(—176,/12T)[1-(56,/6T)+......] (26)
g“=exp(—26,/6T)[1-(8,/3T)+......] @7

which are sufficiently accurate for most purposes. It should also be
noted that in the aforesaid equations 77 and D" are the viscosity
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and self-diffusion coefficients at zero density, respectively. In the
cases of nitrogen, oxygen and carbon dioxide there are only qua-
drupole moments which must be considered.

INVERSION TECHNIQUE

In the interest of brevity, only a brief description of the inversion
technique will be given here. The inversion technique is initiated
by estimating G,, an inversion function, from an initial model po-
tential such as the LJ(12-6). The inversion function is a function of
the reduced temperature (T") alone. We have estimated this func-
tion using the LJ (12-6) model as the initial model. Given a set of
reduced viscosity coefficient collision integrals, Q%" over a wide
range of reduced temperature from the extended law of correspond-
ing states [Bzowski et al., 1990] on the one hand, and estimating
the G, function from initial model potential LJ(12-6) on the other,
it is possible to transform a pair of data (2*? ", T') to V/eversus 1/
oon the potential energy curve using the essential equations of the
INVERSION method. Now, we can marshal the essential steps of
the INVERSION procedure.

For molecules which interact with an inverse power potential
Wwe can write:

U@=C, /" (28

where C,, is a constant having both positive and negative values,
and r is inter-nuclear distance. It has been shown that for molecules
that interact with an inverse power law there is a relation between
temperature and r as below [Rigby et al., 1984]:

Q*¥(T)=(C,/KT)""F(m) (29)

where F(m) is a constant. We define characteristic values of sepa-
ration r, such that

=" (Tyn"” (30)
and noting that U(r)=C,,/t", and we obtain:

[(DP=(C,/KT)"F(m)=U(r)/C,) " 31)
thus

U@)=(F,) " kT (32)

and writing F"* as G we obtain
U(t)=G(m)KT (33)

for inverse power potential functions, G is a numerical constant.
For the sake of simplicity we use G instead of G,, in the latest ex-
pression. For realistic potentials it is found that G varies with tem-
perature in complicated way, since the collisions have different ener-
gies and probe different parts of the potential function (which, in
terms of the model, have different effective values of m). It is also
found that the variation of G with temperature is very similar for
all realistic potential functions [Rigby et al., 1984] and we may write
U()=G,(T)KT, where G(T) is calculated by using an approximate
potential function Uy(r) such as a LJ(12-6) potential. The details of
the INVERSION procedure, which has been applied on the Extended
Principle of Corresponding States |Bzowski et al., 1990], have been
described in Fig. 1. The considerable practical success of the inver-
sion procedure comes from universality of the inversion function
G(T*) among a whole class of potential functions possessing repul-
sive and attractive branches joined by a single minimum.

As mentioned in the previous paragraphs, it is clear that for the
chosen values of distance, which have been obtained from the cor-
related values of 25 by the corresponding states principle, the
value of V,(r*) does not change much regardless of the value of
number of iterations chosen (n>2). The details of the inversion (itera-
tion) steps are given in Fig. 1.

* M Uy
rExp - UExp u

Intitial guess

Calculation of

e [0~

Lennard-Jones
(12-6)Potential
guess

InterpolateTy, »

|

Calculation of
Deviation

Interpolation of U_,,(rs,)
From (I“;,,..U ;,,,)

!

” . Extrapolation of r;,,
b(‘“l - GC[’I i

— JorGy,(T;,,)

Fig. 1. Flow chart of the iteration steps in the inversion method.
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In this work, the three consecutive integrals, Eqs. (2)+(4), are eval- 1971] and Neufeld and Aziz [1972]. It may also be pointed out that
uated by using numerical integration [Clenshaw and Curtis, 1960] the integral of deflection angle, Eq. (3), is integrated by the trape-
and the computer program developed by O’Hara and Smith [1970, zium rule [Buchnan and Turner, 1992; Conte and de Boor, 1980;

Table 1. The reduced collision integrals and their ratios for the N, system at zero density.

(2,2)* (1,2)* (1,3)* 1,2% (2,3)* (3,3)*
Atzig(l,l)*i’ Bt55<g <-(>254I‘>*<>Q >’ C*Eégu*i’ E*Eig(z,z)*i’ thig(l,l)*i'

Log T* <> <> A B’ c E' F'
0.0 1.5810 1.4167 1.1159 1.2056 0.8421 0.8759 0.9188
0.1 1.4143 1.2746 1.1096 1.1735 0.8528 0.8832 0.9254
0.2 1.2768 1.1569 1.1036 1.1468 0.8671 0.8952 0.9350
0.3 1.1666 1.0610 1.0996 1.1269 0.8825 0.9090 0.9465
0.4 1.0797 0.9834 1.0980 1.1134 0.8973 0.9226 0.9584
0.5 1.0110 0.9202 1.0988 1.1054 0.9101 0.9344 0.9698
0.6 0.9560 0.8679 1.1015 1.1014 0.9204 0.9438 0.9799
0.7 0.9109 0.8238 1.1058 1.1007 0.9280 0.9509 0.9884
0.8 0.8728 0.7853 1.1114 1.1033 0.9332 0.9562 0.9949
0.9 0.8401 0.7507 1.1191 1.1103 0.9358 0.9605 0.9993
1.0 0.8112 0.7182 1.1294 1.1220 0.9358 0.9633 1.0026
1.1 0.7844 0.6865 1.1425 1.1360 0.9332 0.9631 1.0061
1.2 0.7568 0.6547 1.1560 1.1460 0.9291 0.9584 1.0117
1.3 0.7255 0.6225 1.1655 1.1456 0.9252 0.9495 1.0190
1.4 0.6893 0.5907 1.1669 1.1323 0.9239 0.9394 1.0263
1.5 0.6494 0.5609 1.1578 1.1086 0.9267 0.9318 1.0312
1.6 0.6089 0.5344 1.1394 1.0797 0.9339 0.9294 1.0325
1.7 0.5712 0.5123 1.1151 1.0512 0.9444 0.9331 1.0307
1.8 0.5392 0.4950 1.0891 1.0273 0.9566 0.9420 1.0270
1.9 0.5138 0.4825 1.0651 1.0096 0.9687 0.9538 1.0226
2.0 0.4953 0.4739 1.0450 0.9982 0.9793 0.9661 1.0186

Table 2. Same as Table 1 for O, system

Log T* <> <> A B’ c E' F'
0.0 1.5732 1.4100 1.1158 1.2048 0.8482 0.8796 0.9226
0.1 1.4119 1.2734 1.1087 1.1729 0.8577 0.8864 0.9280
0.2 1.2781 1.1592 1.1025 1.1463 0.8709 0.8979 0.9368
0.3 1.1705 1.0657 1.0984 1.1263 0.8855 0.9113 0.9478
0.4 1.0853 0.9895 1.0968 1.1125 0.8996 0.9242 0.9596
0.5 1.0175 0.9272 1.0973 1.1037 0.9120 0.9354 0.9709
0.6 0.9629 0.8757 1.0996 1.0989 0.9221 0.9444 0.9809
0.7 0.9179 0.8322 1.1030 1.0969 0.9299 0.9513 0.9893
0.8 0.8797 0.7944 1.1074 1.0974 0.9354 0.9563 0.9960
0.9 0.8465 0.7607 1.1128 1.1002 0.9389 0.9600 1.0011
1.0 0.8169 0.7297 1.1194 1.1052 0.9405 0.9624 1.0050
1.1 0.7894 0.7004 1.1270 1.1107 0.9405 0.9627 1.0089
1.2 0.7621 0.6720 1.1340 1.1132 0.9398 0.9604 1.0137
1.3 0.7332 0.6445 1.1377 1.1090 0.9394 0.9555 1.0197
1.4 0.7020 0.6183 1.1353 1.0966 0.9408 0.9499 1.0255
1.5 0.6690 0.5942 1.1258 1.0776 0.9448 0.9460 1.0295
1.6 0.6362 0.5732 1.1099 1.0557 0.9516 0.9456 1.0307
1.7 0.6060 0.5560 1.0900 1.0348 0.9602 0.9494 1.0291
1.8 0.5802 0.5427 1.0692 1.0176 0.9696 0.9566 1.0256
1.9 0.5598 0.5330 1.0501 1.0050 0.9785 0.9657 1.0213
2.0 0.5447 0.5266 1.0343 0.9968 0.9863 0.9750 1.0173

Korean J. Chem. Eng.(Vol. 24, No. 1)
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Table 3. Same as Table 1 for CO, system

Log T <> <Q*7> A B’ C E' F
0.0 1.4141 1.5798 1.1172 1.2088 0.8511 0.8815 0.9245
0.1 1.2789 1.4198 1.1102 1.1779 0.8590 0.8877 0.9283
0.2 1.1647 1.2866 1.1046 1.1521 0.8708 0.8988 0.9360
0.3 1.0702 1.1790 1.1016 1.1327 0.8842 09116 0.9467
0.4 0.9924 1.0929 1.1012 1.1187 0.8974 0.9236 0.9589
0.5 0.9284 1.0234 1.1023 1.1085 0.9093 0.9334 0.9712
0.6 0.8752 0.9660 1.1038 1.1005 0.9196 0.9409 0.9824
0.7 0.8304 0.9174 1.1047 1.0937 0.9282 0.9467 0.9918
0.8 0.7923 0.8755 1.1050 1.0886 0.9354 0.9516 0.9988
0.9 0.7593 0.8392 1.1053 1.0864 0.9411 0.9565 1.0033
1.0 0.7301 0.8081 1.1069 1.0882 0.9450 0.9614 1.0058
1.1 0.7034 0.7813 1.1108 1.0931 0.9470 0.9649 1.0077
1.2 0.6782 0.7569 1.1159 1.0971 0.9474 0.9654 1.0110
1.3 0.6540 0.7323 1.1197 1.0956 0.9474 0.9624 1.0162
1.4 0.6308 0.7058 1.1188 1.0861 0.9485 0.9576 1.0219
1.5 0.6094 0.6774 1.1116 1.0699 0.9518 0.9536 1.0264
1.6 0.5905 0.6486 1.0984 1.0507 0.9574 0.9526 1.0281
1.7 0.5748 0.6215 1.0813 1.0321 0.9649 0.9553 1.0270
1.8 0.5626 0.5980 1.0630 1.0165 0.9730 0.9613 1.0239
1.9 0.5537 0.5791 1.0458 1.0051 0.9808 0.9691 1.0200
2.0 0.5477 0.5650 1.0315 0.9976 0.9877 0.9773 1.0161

Dorn and Mc Cracken, 1972]. The cross-section, Eq. (2), and the
collision integrals, Eq. (1), are evaluated by using a Gauss-Legendre
quadratrue (numerical integration) [Press et al., 1994; Smith, 1995;
Hombeck, 1975; Pachmer, 1984].

In the present work, we obtained accurate reduced potential en-
ergies for nitrogen and oxygen at low density by direct inversion
of the viscosity collision integral equation. The collision integrals
and their ratios are given in Tables 1-3.

RESULTS AND DISCUSSION

As mentioned before, the problem of obtaining the interaction
potential energy is the extraction of information about the force by
analyzing the bulk properties. The degree of success will depend
on the accuracy of both the measurements and theory connecting
the force to macroscopic properties, and on the sensitivity of this
connection. The transport coefficients of dilute gases, especially
viscosity, which depends on binary interaction, satisfy the above
condition. It is worth noting that the terms ““dilute” or “low-density”
gas represent a real physical situation, whereas the frequently-used
expression zero-density limit is related to results of a mathematical
extrapolation of a density series of a particular transport property at
constant temperature to zero density. The derived value is assumed
to be identical with the true value for the dilute-gas state, a state-
ment that in most cases turns out to be correct. In this respect, the
inversion procedure plays an important role for generating a like-
molecule potential from the viscosity data and their corresponding
states correlation. This, in turn, permits us to calculate collision inte-
grals, and, consequently, the transport properties more accurately
than is possible by correlations of the corresponding states. In the
case of the corresponding states principle, it must be mentioned that
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since the functional equation obtained from this principle applies in
a more limited form to molecular gases than to noble gases, the a-
rithmetic mean of the functions should be used for the components
of gas mixtures. Also, we are confined only to T">1.0, because vis-
cosity collision integrals for molecular gases at low temperatures
do not exist; consequently, in order to proceed to the next iteration
it is necessary to extrapolate V(r) in the long-range region (low tem-
perature). The extrapolation function that we have used is V'=—Cq’,
where C; is the dispersion coefficient and u is the reciprocal of the
intermolecular distances, both in atomic units. It is remarkable that
the inversion procedure is not unduly sensitive to the nature of the
extrapolating function. Regarding the aforesaid discussion and exist-
ence of corresponding states viscosity coefficients at high tempera-
tures (repulsive region), the inversion was established. It should be
mentioned that although we used just V'=—Cg° as the extrapolat-
ing function at long range region, the inversion function procedure
is not unduly sensitive to the nature of the used extrapolating func-
tions. This is due to the fact that the potential will adjust itself dur-
ing iteration steps (as depicted in the flow chart). As mentioned before,
the inversion function G,(T") is found to be remarkably insensitive to
the precise nature of the potential, a feature which greatly enhances
the convergence rate of the inversion. It is worthwhile to note that
for a given transport property, G,(T") is determined by the ratio of
the impact parameter to the distance of closest approach for a col-
lision at an energy =(s+1)kT, which results in a deflection angle of
O~7" [Maitland et al., 1985b]. It is remarkable that in s has its
usual meaning, which was pointed out in the previous section 2 (§
Kinetic Theory and Pair-Interaction Intermolecular Potential Energy
Function). Maintaining this deflection angle constant as the potential
changes requires the impact parameter to be changed. The distance
of closest approach will change in the same direction and by roughly
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the same magnitude; due to this small deflection angle, the impact
parameter and the distance of closest approach are similar. One there-
fore expects their ratios, and hence the G,(T") function (and conse-
quently extrapolated function), to be essentially independent of the
precise nature of the potential.

Based upon the aforesaid paragraph, a conclusion central to our
study is that it seems to describe an interesting application of the
mnversion method as a universal form. Hence, toward the eventual
goal of a fundamental and unambiguous methodology of the inver-
sion procedure, the objective of the present paper is universality of
the application of inversion method.

The accuracies of the calculated transport properties arise from
the intermolecular potential energy obtained from the inversion pro-
cedure. In the present study, the direct inversion procedure was ap-
plied to corresponding states of viscosity given by Bzowski et al.
[1990] to generate a unique spherically effective pair potential en-
ergies, which we claim are reliable. This claim is based on these
facts that the revision of the extended principle of the correspond-
ing states by Bzowski et al. [1990] correlates the viscosity of the
molecules and their mixtures at low density over a very wide tem-
perature range with very good accuracies and characterizes each
binary interaction with the aid five classical-material parameters o;
& p,C,,and V, [Najafi et al., 1983].

It should be mentioned that the vibrational frequencies neces-
sary for calculating the vibrational part of the thermal conductivity
were taken from McQuarrie [1973]. It should also be pointed out
that the contribution to A,,. is small because the corresponding con-
tributions to the heat capacity are small for the range of tempera-
tures considered here. Henceforth, in the present calculations, we
neglected the term A,,...

Terms A’ and A™ are zero for nitrogen and oxygen molecules
because they have no dipole moment. Therefore, for a given tem-
perature, the first step is the calculation of ¢, and D,,, from Egs.
(18) and (19) or (20). D,, can be used to calculate D}, via Egs.
(21)-27). From ¢, and D,,, A, and A, ,, are calculated by the use
of Egs. (15) and (16). Applying D;), and A,, values to Egs. (11)-
(14), the thermal conductivity A can computed. The viscosity coef-
ficient 7 and self-diffusion coefficient D at zero density needed in
the calculation of the thermal conductivity coefficient were taken
from the present calculations. After calculating the various contri-
butions to the thermal conductivity at the zero density due to inter-
nal degree of freedom then, we calculated the thermal conductivity
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Fig. 2. Deviation values of thermal conductivity for O,. The experi-
mental values are adopted from Laesecke et al. [1990].
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Fig. 3. Deviation values of thermal conductivity for N,. The experi-
mental values are adopted from Stephan et al. [1987].
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Fig. 4. Deviation values of thermal conductivity for CO,. The ex-
perimental values are adopted from Millat et al. [1987].

at moderate density by the correlation which has been proposed by
Najafi et al. [Ghayeb, 2003, 2004].

Deviation plots for thermal conductivity coefficients of O,, N,
and CO, systems are shown in Figs. 2-4,

CONCLUSIONS

We have used the reasonably effective potential energy function
to obtain improved collision integrals needed for the calculation of
the transport properties. The main advantage of the ratios of the col-
lision integrals obtained from the inversion of the corresponding
states of viscosity is that it is more accurate than those obtained from
other corresponding states because measurements of viscosity are
more practical than those of other transport properties.

The calculation of thermal conductivity from the INVERTED
potential by means of WCUB approach, and subsequent compari-
son with the experimentally based values, has been shown to pro-
vide a powerful test of the accuracy of the INVERTED potential.
It is an advancement over the traditional approaches that consider a
potential function with several parameters and try to adjust them
using experimental results. This scheme provides an accurate poten-
tial energy and allows determination of collision integrals more ac-
curately than is possible by the extended law of corresponding states.
The direct inversion of the viscosity collision integral correlation
obtained from an extended law of corresponding states is obvi-
ously a powerful method for establishing an accurate unlike-pair

Korean J. Chem. Eng.(Vol. 24, No. 1)
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potential energy. The accurate potential energy obtained by inver-
sion of viscosity data can reproduce (within precision of the experi-
mental data) all transport properties. Our estimated accuracy is within
10% for thermal conductivity.
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NOMENCLATURE

b : impact parameter

: specify weighting factors related to the mechanism of trans-
port by molecular collisions

: intermolecular distance

: Boltzmann constant

: molecular mass

: reciprocal of the intermolecular distance

: dispersion coefficient

: relative kinetic energy

: inversion function

: absolute temperature

V(r) :intermolecular potential energy

A’,B",C", E', F : ratios of collision integral

T :reduced temperature

Q"(E) : transport collision integral

D : self-diffusion coefficient at zero density

D,, : coefficient for diffusion of molecular rotational energy

D,; : coefficient for diffusion of molecular vibrational energy

D,.. :coefficient for diffusion of molecular electronic energy

D¢, diffusion coefficient for rotational energy including correc-

tion for resonant exchange

C,» :molar heat capacity due to molecular vibration

C,, :molar heat capacity due to molecular rotation

: molar heat capacity due to molecular electronic degrees of
freedom

B, :transport virial coefficient

C, :transport virial coefficient

g :temperature-dependent dimensionless factor needed in cal-
culation of A2

: temperature-dependent dimensionless factor needed in cal-
culation of A“/

g : temperature-dependent dimensionless factor needed in cal-

culation of A%

o~
w

HomAos g ®w"

Greek Letters

& :energy scaling factor
o :length scaling factor
6  :relative scattering angle between two colliding partners

Q" : collision integral

Q""" : reduced collision integral

Q""" reduced collision integral for diffusion

Q%" reduced collision integral for viscosity (or thermal conduc-
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tivity)
: viscosity coefficient at zero density
A" : thermal conductivity at zero density
A9 contribution of molecular translational energy to thermal
conductivity at zero density
28 contribution of molecular rotational energy to thermal con-
ductivity at zero density
A%+ contribution of molecular vibrational energy to thermal con-
ductivity at zero density
A5 : contribution of molecular electronic energy to thermal con-
ductivity at zero density
A?  : correction for resonant exchange of molecular rotational
energy due to dipole-quadrupole interactions
: correction for resonant exchange of molecular rotational
energy due to quadrupole-quadrupole interactions
ALY : correction for resonant exchange of molecular rotational
energy due to dipole-dipole interactions
&, - collision number for rotational relaxation
- high-temperature asymptotic value of collision number for
rotational relaxation

A, :correction to A for interaction of molecular rotational and
translational energy

A, :correction to A for alignment of molecular angular momen-
tum (spin polarization)

®  : quadrupole moment

6,,= 17/2KI : characteristic rotational temperature

6, :characteristic vibrational temperature
p  :mass density of gas
Subscripts

Exp. : experimental
Corr. : corresponding states
Calc. : calculated
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